jwbf.net
当前位置:首页 >> 求不定积分,∫sin^2x Dx >>

求不定积分,∫sin^2x Dx

利用半角公式如图降次计算。经济数学团队帮你解答,请及时采纳。谢谢!

其实这两种解法都是正确的 这两个结果看似不同,其他仅仅是常数的原因而已 (sinx)^2+C1 -1/2 cos2x+C2 -1/2 cos2x=sin²x-1/2 所以只要C1=-1/2 C2=0就可以了

1.将分母变为sin2x即原式为∫[(4cos2x/sin^2(2x))]dx 2.进行换元即2x变为t,原式变为∫[(2cos2x/sin^2t)]dt. 3继续换元,可观察到(sin t)'=cost.所以原式等于2∫[(1/sin^2t]d(sint). 4.得出答案为:(-2/sint)+c 5.将t换回为2x有(-2/sin...

见图

利用二倍角公式降次 cos4x=1-2sin²2x ∴sin²2x=(1-cos4x)/2 ∫ sin²2xdx =∫ (1-cos4x)/2 dx =(1/2)*(∫dx-∫cos4xdx) =(1/2)*[x-(1/4)sin4x]+C =x/2-(sin4x)/8+C C为任意常数

(sinx*cosx)^2=0.25*sin(2x)^2 积分=-2/sin(2*x)*cos(2*x)+C

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。

这题的不定积分过程应该没有困难,我想你的问题在于最后代入积分限时出错。注意:原函数在x=π/2处是个间断点: 那么就需要分区间代入积分结果,因为牛顿-莱布尼兹公式要求区间上函数是连续的,参考下图:

你好 ∫x^2sin2xdx =-1/2∫x^2d(cos2x) =-1/2[cos2x*x^2-∫2x*cos2xdx] =-1/2[cos2x*x^2-∫xd(sin2x)] =-1/2[cos2x*x^2-(sin2x*x-∫sin2xdx)] =-1/2cos2x*x^2+1/2sin2x*x-1/2∫sin2xdx =-1/2cos2x*x^2+1/2sin2x*x+1/4cos2x+C 【数学辅导团】为您...

网站首页 | 网站地图
All rights reserved Powered by www.jwbf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com