jwbf.net
当前位置:首页 >> sinx求导 Cosx >>

sinx求导 Cosx

使用对数恒等式即可 y=(sinx)^cosx 显然sinx=e^ln(sinx) 所以得到 y=e^[ln(sinx)*cosx] 于是对x求导得到 y'=e^[ln(sinx)*cosx] *[ln(sinx)*cosx]' =(sinx)^cosx * [cosx/sinx *cosx +ln(sinx) *(-sinx)] =(sinx)^cosx * [(cosx)^2/ sinx -sinx *...

(sinx)'=lim[sin(x+△x)-sinx]/(△x),其中△x→0, 将sin(x+△x)-sinx展开, sinxcos△x+cosxsin△x-sinx,由于△x→0,故cos△x→1, 从而sinxcos△x+cosxsin△x-sinx→cosxsin△x, 于是(sinx)’=lim(cosxsin△x)/△x, △x→0时,lim(sin△x)/△x=1 所以 (sinx)’=cosx

y'=x'·cosx+x·(cosx)'+(sinx)' =1·cosx+x·(-sinx)+cosx =cosx-xsinx+cosx =2cosx-xsinx 用到的公式: (uv)'=u'v+uv' (cosx)'=-sinx (sinx)'=cosx

你是对的,cosx导数是-sinx

(sinx/cosx)'=(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2

y=sinx *cosx 实际上就是y=1/2 sin2x 那么求导得到 y'=1/2 *cos2x *(2x)' =cos2x

如上图所示。

(sinxcosx)′ =(sinx) ′cosx+sinx(cosx) ′ =cosxcosx+sinx(-sinx) =(cosx)^2-(sinx)^2 =cos2x 求导法则:f(x)g(x)=f′(x)g(x)+f(x)g′(x)

用定义 (sinx)'=lim[sin(x+△x)-sinx]/(△x),其中△x→0,将sin(x+△x)-sinx展开,就是sinxcos△x+cosxsin△x-sinx,由于△x→0,故cos△x→1,从而sinxcos△x+cosxsin△x-sinx→cosxsin△x,于是(sinx)’=lim(cosxsin△x)/△x,这里必须用到一个重要的极限,当△x→0时候,li...

使用导数的定义证明即可:

网站首页 | 网站地图
All rights reserved Powered by www.jwbf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com